
Java Interface

Topics : JAVA
Written on April 10, 2023

In Java, an interface is a collection of abstract methods and constants that define a contract for
classes to follow. Interfaces provide a way to define common behaviors that can be implemented by
different classes without requiring them to share a common hierarchy.

An interface can be declared using the interface keyword and can contain one or more method
signatures and constants. Method signatures are defined without an implementation and must be
implemented by any class that implements the interface.

Here's an example of an interface in Java:

public interface Drawable {
 void draw();
}

In this example, Drawable is an interface that contains a single method signature draw(). Any
class that implements the Drawable interface must provide an implementation for this method.

Classes can implement one or more interfaces by using the implements keyword. When a class
implements an interface, it must provide an implementation for all of the methods declared in the
interface.

Here's an example of a class that implements the Drawable interface:

public class Circle implements Drawable {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public double getArea() {
 return Math.PI * Math.pow(radius, 2);
 }

 public void draw() {
 System.out.println("Drawing circle with radius " + radius);
 }
}

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/12/java.html
https://www.aryatechno.com/page/java/302/java-interface.html

In this example, Circle is a class that implements the Drawable interface. It provides an
implementation for the draw() method, as required by the interface.

Interfaces are a powerful tool in Java that enable polymorphism, code reuse, and flexibility. They
provide a way to define common behaviors that can be implemented by different classes without
requiring them to share a common hierarchy.

Here are some advantages of using interfaces in Java:

Abstraction: Interfaces provide a way to define a contract for classes to follow without1.
providing any implementation details. This abstraction allows developers to focus on defining
behaviors without worrying about the underlying implementation details.

Polymorphism: Interfaces enable polymorphism, which allows objects of different classes to be2.
treated as if they were of the same type. This allows developers to write more flexible and
reusable code.

Separation of Concerns: Interfaces provide a way to separate the definition of behaviors from3.
their implementation. This allows developers to change the implementation details without
affecting the rest of the code.

Multiple Inheritance: Java classes can only inherit from a single parent class, but they can4.
implement multiple interfaces. This allows classes to inherit behaviors from multiple sources.

Code Reusability: Interfaces provide a way to define common behaviors that can be5.
implemented by multiple classes. This promotes code reusability and reduces code duplication.

Loose Coupling: Interfaces provide a way to define dependencies between classes without6.
creating tight coupling between them. This promotes modularity and makes it easier to
maintain and extend the code.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by AryatechnoARYA
TECHNO

https://www.aryatechno.com/

