
Laravel - Views

Topics : Laravel
Written on December 22, 2023

In Laravel, views are used to render HTML content and display it to the user. Views provide a way to
separate the application's logic from its presentation layer. Here's a brief overview of working with
views in Laravel:

Creating Views:

Views in Laravel are typically stored in the resources/views directory. You can create a new view
file with the .blade.php extension. For example, you might have a file named
welcome.blade.php:

<!-- resources/views/welcome.blade.php -->
<!DOCTYPE html>
<html>
<head>
 <title>Welcome</title>
</head>
<body>
 <h1>Hello, {{ $name }}</h1>
</body>
</html>

Passing Data to Views:

You can pass data to views using the view function or the with method:

// Using the view function
return view('welcome', ['name' => 'John']);

// Using the with method
return view('welcome')->with('name', 'John');

In the above examples, the $name variable is passed to the welcome.blade.php view.

Blade Templating:

Laravel uses the Blade templating engine to simplify writing views. Blade allows you to use template
inheritance, control structures, and more:

<!-- resources/views/layouts/app.blade.php -->

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/20/laravel.html
https://www.aryatechno.com/topics/

<!DOCTYPE html>
<html>
<head>
 <title>@yield('title', 'Default Title')</title>
</head>
<body>
 <div class="container">
 @yield('content')
 </div>
</body>
</html>

<!-- resources/views/welcome.blade.php -->
@extends('layouts.app')

@section('title', 'Welcome')

@section('content')
 <h1>Hello, {{ $name }}</h1>
@endsection

In the above example, the welcome.blade.php view extends the app.blade.php layout and
provides content for the title and content sections.

Including Sub-Views:

You can include other views within a view using the @include directive:

<!-- resources/views/welcome.blade.php -->
@include('partials.header')

<h1>Hello, {{ $name }}</h1>

@include('partials.footer')

View Composer:

View composers allow you to bind data to a view each time it is rendered. This is useful for sharing
data across multiple views:

// In a service provider or a dedicated service provider class
View::composer('welcome', function ($view) {
 $view->with('name', 'John');
});

View Caching:

To improve performance, you can cache views using the view:cache Artisan command:

php artisan view:cache

ARYA
TECHNO

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

