
Laravel - Facades

Topics : Laravel
Written on December 25, 2023

In Laravel, facades provide a convenient and expressive way to interact with Laravel services.
Facades are a static interface to classes available in the service container. Laravel comes with many
built-in facades, and you can create custom facades for your application.

1. Understanding Facades:

Facades provide a "static" interface to classes bound in the service container. They offer a concise
syntax for accessing Laravel services without injecting them into your classes.

2. Built-in Facades:

Laravel provides several built-in facades that give you easy access to various features. Some
common ones include:

Cache:

use Illuminate\Support\Facades\Cache;

$value = Cache::get('key');

Config:

use Illuminate\Support\Facades\Config;

$value = Config::get('app.timezone');

Session:

use Illuminate\Support\Facades\Session;

$value = Session::get('key');

URL:

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/20/laravel.html
https://www.aryatechno.com/topics/laravel-facades

use Illuminate\Support\Facades\URL;

$url = URL::to('path');

3. Creating Custom Facades:

You can create your own facades for custom classes. To create a custom facade, you need to create a
new class and a facade class.

Create a class:

// app/Services/MyService.php

namespace App\Services;

class MyService
{
 public function doSomething()
 {
 return 'Something done!';
 }
}

Create a facade:

// app/Facades/MyServiceFacade.php

namespace App\Facades;

use Illuminate\Support\Facades\Facade;

class MyServiceFacade extends Facade
{
 protected static function getFacadeAccessor()
 {
 return 'my-service';
 }
}

Register the service in the service container:

In a service provider or the AppServiceProvider, you can bind the service to the container.

// app/Providers/AppServiceProvider.php

namespace App\Providers;

use App\Services\MyService;
use Illuminate\Support\ServiceProvider;

ARYA
TECHNO

class AppServiceProvider extends ServiceProvider
{
 public function register()
 {
 $this->app->bind('my-service', function () {
 return new MyService();
 });
 }
}

4. Using Custom Facades:

Now, you can use your custom facade in your application:

use App\Facades\MyServiceFacade;

$result = MyServiceFacade::doSomething();

5. Facades vs Dependency Injection:

Facades provide a concise syntax for accessing services, but they are essentially a form of static
proxy. While convenient, they can make code less testable. Dependency injection is often preferred
for better testability and explicit dependencies.

6. Dynamic Properties:

Some facades, like the Request facade, allow you to access methods as if they were properties for a
more expressive syntax:

use Illuminate\Support\Facades\Request;

$path = Request::path();
// or
$path = Request::path;

7. Facade Aliases:

You can add an alias for a facade in the config/app.php file:

'aliases' => [
 // ...
 'MyService' => App\Facades\MyServiceFacade::class,
],

This allows you to use a shorter alias in your code:

use MyService;

$result = MyService::doSomething();

ARYA
TECHNO

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

