
Laravel - Hashing

Topics : Laravel
Written on December 25, 2023

In Laravel, hashing is the process of securely transforming sensitive data, such as passwords, into a
fixed-length string of characters. Laravel uses the Bcrypt hashing algorithm by default, which is a
secure one-way hashing algorithm.

1. Hashing a Value:

To hash a value, such as a password, you can use the bcrypt helper function or the Hash facade.

Using bcrypt helper function:

$hashedValue = bcrypt('secret_password');

Using Hash facade:

use Illuminate\Support\Facades\Hash;

$hashedValue = Hash::make('secret_password');

2. Verifying a Hashed Value:

To verify a hashed value, you can use the Hash::check method.

use Illuminate\Support\Facades\Hash;

$hashedPassword = Hash::make('secret_password');
$isMatch = Hash::check('secret_password', $hashedPassword);

if ($isMatch) {
 // Password is correct
} else {
 // Password is incorrect
}

3. Using Hashing in Eloquent Models:

In Eloquent models, you can leverage the Hash facade to automatically hash attributes when setting

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/20/laravel.html
https://www.aryatechno.com/topics/laravel-hashing

them.

use Illuminate\Support\Facades\Hash;

class User extends Model
{
 protected $fillable = ['name', 'email', 'password'];

 public function setPasswordAttribute($value)
 {
 $this->attributes['password'] = Hash::make($value);
 }
}

4. Customizing Hashing Configurations:

You can customize hashing configurations, such as the hashing algorithm and cost factor, in the
config/hashing.php configuration file.

return [
 'driver' => 'bcrypt',
 'bcrypt' => [
 'rounds' => 10,
],
];

5. Using a Different Hashing Algorithm:

While Bcrypt is the default hashing algorithm, Laravel supports other algorithms like Argon2. You
can configure this in the config/hashing.php file.

6. Checking if a Value Needs Rehashing:

In case you update your hashing algorithm or configuration, you can use the Hash::needsRehash
method to check if a hashed value needs rehashing.

use Illuminate\Support\Facades\Hash;

if (Hash::needsRehash($hashedValue)) {
 $newHashedValue = Hash::make('secret_password');
 // Save $newHashedValue to the database
}

7. Hashing User Passwords in Authentication:

Laravel's authentication system automatically handles hashing and verifying user passwords.

use Illuminate\Support\Facades\Auth;

ARYA
TECHNO

use Illuminate\Support\Facades\Hash;

// Attempt to authenticate the user
if (Auth::attempt(['email' => $email, 'password' => $password])) {
 // The user is authenticated
}

8. Hashing Passwords in Forms:

When working with forms, you can hash passwords before sending them to the server.

<form method="POST" action="/login">
 @csrf
 <input type="text" name="email" required>
 <input type="password" name="password" required>
 <button type="submit">Login</button>
</form>

9. Hashing API Tokens:

Laravel Passport automatically hashes API tokens.

10. Clearing Hashed Values:

If you need to clear hashed values (e.g., when seeding the database), you can use the Hash::make
method with a fixed seed value.

use Illuminate\Support\Facades\Hash;

$hashedValue = Hash::make('secret_password', ['rounds' => 4]);

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

