
MongoDB Exercises

Topics : MongoDB
Written on December 30, 2023

Exercise 1: Insert Data

Create a new database named mydatabase.1.
Create a collection named students.2.
Insert two documents into the students collection with fields such as name, age, and3.
subject.

Answers :

// 1. Create a new database named `mydatabase`.
use mydatabase

// 2. Create a collection named `students`.
db.createCollection("students")

// 3. Insert two documents into the `students` collection.
db.students.insertMany([
 { name: "John", age: 22, subject: "Math" },
 { name: "Alice", age: 25, subject: "History" }
])

Exercise 2: Query Data

Retrieve all documents from the students collection.1.
Retrieve only the names of students from the students collection.2.
Find all students who are 25 years old.3.

Answers :

// 1. Retrieve all documents from the `students` collection.
db.students.find()

// 2. Retrieve only the names of students from the `students` collection.
db.students.find({}, { name: 1, _id: 0 })

// 3. Find all students who are 25 years old.
db.students.find({ age: 25 })

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/21/mongodb.html
https://www.aryatechno.com/topics/

Exercise 3: Update Data

Update the age of a specific student in the students collection.1.
Add a new field, grade, with the value "A" to all documents in the students collection.2.
Answers :

// 1. Update the age of a specific student in the `students` collection.
db.students.updateOne({ name: "John" }, { $set: { age: 23 } })

// 2. Add a new field, `grade`, with the value "A" to all documents in the `students` collection.
db.students.updateMany({}, { $set: { grade: "A" } })

Exercise 4: Delete Data

Delete a specific student from the students collection.1.
Remove the grade field from all documents in the students collection.2.

Answers :

// 1. Delete a specific student from the `students` collection.
db.students.deleteOne({ name: "Alice" })

// 2. Remove the `grade` field from all documents in the `students` collection.
db.students.updateMany({}, { $unset: { grade: 1 } })

Exercise 5: Aggregation

Calculate the average age of students in the students collection.1.
Group students by their subjects and calculate the count of students in each subject.2.

Answers :

// 1. Calculate the average age of students in the `students` collection.
db.students.aggregate([
 { $group: { _id: null, avgAge: { $avg: "$age" } } }
])

// 2. Group students by their subjects and calculate the count of students in each subject.
db.students.aggregate([
 { $group: { _id: "$subject", count: { $sum: 1 } } }
])

Exercise 6: Indexing

Create an index on the name field in the students collection.1.

ARYA
TECHNO

Check the execution plan of a query to see if the created index is being used.2.

Answers :

// 1. Create an index on the `name` field in the `students` collection.
db.students.createIndex({ name: 1 })

// 2. Check the execution plan of a query to see if the created index is being used.
db.students.find({ name: "John" }).explain("executionStats")

Exercise 7: Text Search

Create a text index on the name and subject fields in the students collection.1.
Perform a text search for students with a specific keyword.2.

Answers :

// 1. Create a text index on the `name` and `subject` fields in the `students` collection.
db.students.createIndex({ name: "text", subject: "text" })

// 2. Perform a text search for students with a specific keyword.
db.students.find({ $text: { $search: "Math" } })

Exercise 8: Working with Dates

Insert a document with a birthDate field representing a date of birth.1.
Find students born after a certain date.2.

Answers :

// 1. Insert a document with a `birthDate` field representing a date of birth.
db.students.insertOne({ name: "Bob", birthDate: ISODate("1990-01-01") })

// 2. Find students born after a certain date.
db.students.find({ birthDate: { $gt: ISODate("1990-01-01") } })

Exercise 9: Geospatial Query

Create a collection named locations.1.
Insert documents representing locations with latitude and longitude fields.2.
Find locations near a specific point using geospatial queries.3.

Answers :

// 1. Create a collection named `locations`.
db.createCollection("locations")

// 2. Insert documents representing locations with `latitude` and `longitude` fields.

ARYA
TECHNO

db.locations.insertMany([
 { name: "Location1", location: { type: "Point", coordinates: [1, 1] } },
 { name: "Location2", location: { type: "Point", coordinates: [2, 2] } }
])

// 3. Find locations near a specific point using geospatial queries.
db.locations.find({
 location: {
 $near: {
 $geometry: { type: "Point", coordinates: [0, 0] },
 $maxDistance: 100000 // in meters
 }
 }
})

Exercise 10: Aggregation Pipeline

Create a collection named orders with documents representing orders.1.
Use the aggregation pipeline to calculate the total revenue.2.

Answers :
// 1. Create a collection named `orders` with documents representing orders.
db.createCollection("orders")
db.orders.insertMany([
 { product: "A", quantity: 10, price: 5 },
 { product: "B", quantity: 5, price: 10 },
 { product: "A", quantity: 8, price: 6 }
])

// 2. Use the aggregation pipeline to calculate the total revenue.
db.orders.aggregate([
 { $project: { revenue: { $multiply: ["$quantity", "$price"] } } },
 { $group: { _id: null, totalRevenue: { $sum: "$revenue" } } }
])

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by AryatechnoARYA
TECHNO

https://www.aryatechno.com/

