
React Context

Topics : React JS
Written on January 03, 2024

React Context is a feature that allows you to share state or other values like themes or
authentication status between components without having to explicitly pass props through every
level of the component tree. It's particularly useful when you have deeply nested components that
need access to shared data.

Here's a basic overview of how React Context works:

1. Creating a Context:

You create a context using the createContext function. This function returns an object with two
components: Provider and Consumer. However, with the introduction of the useContext hook in
React 16.8, using the Consumer component is less common.

// MyContext.js
import { createContext } from 'react';

const MyContext = createContext();

export default MyContext;

2. Providing the Context Value:

The Provider component is used to wrap the part of the component tree where you want to make
the context available. It takes a value prop, which is the data you want to share.

// App.js
import React from 'react';
import MyContext from './MyContext';

const App = () => {
const sharedValue = 'Hello from Context!';

return (
<MyContext.Provider value={sharedValue}>
{/* Your components go here */}
</MyContext.Provider>
);
};

export default App;

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/22/react-js.html
https://www.aryatechno.com/topics/


3. Consuming the Context Value:

Components that want to access the shared data can use the useContext hook. This hook takes the
context object created earlier and returns the current context value.

// SomeComponent.js
import React, { useContext } from 'react';
import MyContext from './MyContext';

const SomeComponent = () => {
const contextValue = useContext(MyContext);

return (
<div>
<p>{contextValue}</p>
</div>
);
};

export default SomeComponent;

Alternatively, you can still use the Consumer component for class components or when you need to
consume multiple contexts.

// SomeComponent.js
import React from 'react';
import MyContext from './MyContext';

const SomeComponent = () => (
<MyContext.Consumer>
{(contextValue) => (
<div>
<p>{contextValue}</p>
</div>
)}
</MyContext.Consumer>
);

export default SomeComponent;

By using React Context, you can avoid "prop drilling" (passing props down multiple levels) and make
your code more maintainable, especially in scenarios where multiple components need access to the
same data or state.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

