‘ ARYATECHNO

Angular]S Dependency Injection

Topics : Angular]S
Written on January 09, 2024

In Angular]S, dependency injection is a design pattern that facilitates the management of
components and their dependencies. Angular]S uses dependency injection to make components
more modular, reusable, and testable. Here's an overview of dependency injection in Angular]S:

Basics of Dependency Injection:

In Angular]S, components like controllers, services, and directives can have dependencies on other
components. Dependency injection is the process of providing these dependencies to a component
rather than the component creating or managing its dependencies.

Angular]S's injector system is responsible for resolving and providing these dependencies to
components.

Example of Dependency Injection in a Controller:

// Define a custom service named 'myDataService'
angular.module('myApp').service('myDataService', function() {
this.getData = function() {

return ['Item 1', 'Item 2', 'Item 3'];

b

};

/[Inject 'myDataService' into the 'MyController' controller
angular.module('myApp').controller('"MyController', function($scope, myDataService) {
$scope.items = myDataService.getData();

};

In this example:

e The myDataService service is injected into the MyController controller.
e Angular]S automatically resolves the dependencies and provides an instance of
myDataService to the controller.

Dependency Injection in Directives:

/] Define a custom directive named 'myDirective'
angular.module('myApp').directive('myDirective’, function() {
return {

restrict: 'E',

template: '<p>{{ message } }</p>',

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/23/angularjs.html
https://www.aryatechno.com/topics/

controller: function($scope, myDataService) {

$scope.message = 'Data from directive: ' + myDataService.getData()[0];
}

b

};

In this example, the myDataService service is injected into the directive's controller.
Dependency Injection in Services:

/] Define a custom service named 'myOtherService'
angular.module('myApp').service('myOtherService', function() {
this.getAnotherData = function() {

return ['Item A', 'Item B', 'Item C'];

};
});

/l Inject 'myDataService' and 'myOtherService' into the 'MyCombinedService' service
angular.module('myApp').service('MyCombinedService', function(myDataService, myOtherService) {
this.getAllData = function() {

return myDataService.getData().concat(myOtherService.getAnotherData());

Y
};

In this example, the myDataService and myOtherService services are injected into the
MyCombinedService service.

Benefits of Dependency Injection:

1. Modularity:

o Components can be developed and tested independently, making the application more
modular.

2. Reusability:

o Components with dependencies can be reused across different parts of the application.
3. Testability:

o Easier unit testing as dependencies can be easily mocked or replaced during testing.
4. Maintainability:

o Components are less tightly coupled, making it easier to modify, extend, or replace
them.

Implicit vs. Explicit Dependency Injection:

Angular]S supports both implicit and explicit dependency injection.

e Implicit:

o Components declare their dependencies in the function parameters, and Angular]S
resolves them automatically based on the parameter names.

angular.module('myApp').controller('"MyController', function($scope, myDataService) {
/...
};

e Explicit:

o Dependencies are explicitly specified using an array syntax. This can be useful for
minification where parameter names might get changed.

angular.module('myApp').controller('"MyController’, ['$scope’, 'myDataService',
function($scope, myDataService) {

I ...

H);

Minification and Dependency Injection:

In minified code, Angular]S relies on the parameter names of the function to determine
dependencies. If you're using implicit dependency injection, it's important to use tools like ng-
annotate during the build process to handle minification.

angular.module('myApp').controller('"MyController', function($scope, myDataService) {
...
};

After minification, this might become:

angular.module('myApp').controller('"MyController’, function(a, b) {
/...
};

However, with ng-annotate, it automatically adds the necessary annotations for correct dependency
injection.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

https://www.aryatechno.com/

