
Introduction to Models in CodeIgniter

Topics : Codeigniter
Written on February 29, 2024

In CodeIgniter, models play a crucial role in managing the application's data logic, interacting with
the database, and performing various data-related operations. Models represent the M (Model)
component in the MVC (Model-View-Controller) architecture, responsible for handling data
manipulation, retrieval, and validation. Here's an introduction to models in CodeIgniter:

Purpose of Models:

Models in CodeIgniter encapsulate the business logic and data manipulation logic of the
application.
They interact with the database to perform CRUD (Create, Read, Update, Delete) operations
on data.
Models can also contain validation rules to ensure data integrity and enforce business rules.
Models facilitate the separation of concerns, allowing controllers to focus on application flow
and views to focus on presentation.

Creating Models:

Models in CodeIgniter are typically stored in the application/models directory.
Each model is defined as a PHP class that extends the CI_Model class provided by
CodeIgniter.
You can create multiple models to handle different aspects of your application's data logic.

Example model file (User_model.php):

<?php
defined('BASEPATH') OR exit('No direct script access allowed');

class User_model extends CI_Model {
    public function get_user($user_id) {
        // Database query to retrieve user data
        return $query->row();
    }
    public function create_user($data) {
        // Database query to insert new user data
        $this->db->insert('users', $data);
        return $this->db->insert_id();
    }
    // Add more methods for other data operations

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/25/codeigniter.html
https://www.aryatechno.com/topics/


}
?>

Loading Models:

Models are loaded from within controller methods or other models using CodeIgniter's built-in
Loader class.
You can load models in controllers, libraries, or other models using the
$this->load->model() method.

Example controller method:

public function index() {
    // Load model
    $this->load->model('user_model');
    // Call model method to retrieve user data
    $user = $this->user_model->get_user(123);
    // Use retrieved user data in controller
}

Using Models:

Once loaded, you can call methods defined in the model to perform data operations such as
fetching user data, creating new records, updating existing records, or deleting records.
Models typically encapsulate database queries and other data-related operations, abstracting
them away from the controller or view layer.

Best Practices:

Keep models focused on data-related operations and business logic. Avoid including
presentation logic or view-related code in models.
Use models to encapsulate complex data operations and database interactions, keeping
controllers lean and focused on application flow.
Validate data and enforce business rules within models to ensure data integrity and security.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by AryatechnoARYA
TECHNO

https://www.aryatechno.com/

