‘ ARYATECHNO

Connecting Codelgniter with databases

Topics : Codeigniter
Written on February 29, 2024

Connecting Codelgniter with databases is a fundamental aspect of building dynamic web
applications. Codelgniter provides a convenient database abstraction layer that allows you to
interact with various database systems using a unified interface. Here's how you can connect
Codelgniter with databases:

1. Configure Database Settings:

e Open the application/config/database. php file in your Codelgniter project.
e Set up the database connection parameters such as hostname, username, password, database
name, and other options based on your database server configuration.

Example configuration for MySQL.:

$db['default'] = array(
Idsnl => Il'
"hostname' => 'localhost',
‘username' => 'your username',

'password' => 'your password',

‘database' => 'your database name',
‘dbdriver' => 'mysqli’',

"dbprefix' => "',

"pconnect' => FALSE,

'db _debug' => (ENVIRONMENT !== 'production'),
‘cache on' => FALSE,

‘cachedir' => '',

‘char_set' => 'utf8"',

'dbcollat' => 'utf8 general ci',

'swap _pre' => ,
‘encrypt’ => FALSE,
‘compress' => FALSE,
'stricton' => FALSE,
'failover' => array(),
'save queries' => TRUE

);
2. Loading the Database Library:

e Codelgniter provides a database library that simplifies database operations.

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/25/codeigniter.html
https://www.aryatechno.com/topics/

e The database library is loaded automatically when you autoload libraries in your
application/config/autoload. php file.

¢ Alternatively, you can load the database library manually in your controller or model using the
$this->load->database() method.

Example of manual loading in a controller:

$this->load->database();
3. Performing Database Queries:

e Once the database library is loaded, you can use its methods to perform database queries such
as selecting, inserting, updating, and deleting data.

e Codelgniter provides a query builder class that allows you to build SQL queries using a fluent
interface or execute raw SQL queries.

Example of using the query builder:

$query = $this->db->get('users');
foreach ($query->result() as $row) {
echo $row->username;

}

Example of executing a raw SQL query:

$query = $this->db->query('SELECT * FROM users');
foreach ($query->result() as $row) {
echo $row->username;

}
4. Using Active Record:

e Codelgniter's Active Record class provides a convenient way to perform database operations
using object-oriented syntax.

e Active Record allows you to chain methods to build complex queries and helps prevent SQL
injection attacks.

Example of using Active Record:

$this->db->select('username, email');
$this->db->from('users');
$this->db->where('status', 'active');
$query = $this->db->get();

5. Handling Database Errors:

e Codelgniter provides error handling mechanisms for database operations, allowing you to
handle errors gracefully.

e You can enable or disable database debugging in the database.php configuration file based
on your environment.

6. Important Notes:

¢ Always validate and sanitize user input to prevent SQL injection and other security
vulnerabilities.

e Use transactions for atomic operations that involve multiple database queries.

e Optimize database queries for performance by indexing frequently queried columns and
minimizing unnecessary queries.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

https://www.aryatechno.com/

