
Connecting CodeIgniter with databases

Topics : Codeigniter
Written on February 29, 2024

Connecting CodeIgniter with databases is a fundamental aspect of building dynamic web
applications. CodeIgniter provides a convenient database abstraction layer that allows you to
interact with various database systems using a unified interface. Here's how you can connect
CodeIgniter with databases:

1. Configure Database Settings:

Open the application/config/database.php file in your CodeIgniter project.
Set up the database connection parameters such as hostname, username, password, database
name, and other options based on your database server configuration.

Example configuration for MySQL:

$db['default'] = array(
 'dsn' => '',
 'hostname' => 'localhost',
 'username' => 'your_username',
 'password' => 'your_password',
 'database' => 'your_database_name',
 'dbdriver' => 'mysqli',
 'dbprefix' => '',
 'pconnect' => FALSE,
 'db_debug' => (ENVIRONMENT !== 'production'),
 'cache_on' => FALSE,
 'cachedir' => '',
 'char_set' => 'utf8',
 'dbcollat' => 'utf8_general_ci',
 'swap_pre' => '',
 'encrypt' => FALSE,
 'compress' => FALSE,
 'stricton' => FALSE,
 'failover' => array(),
 'save_queries' => TRUE
);

2. Loading the Database Library:

CodeIgniter provides a database library that simplifies database operations.

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/25/codeigniter.html
https://www.aryatechno.com/topics/

The database library is loaded automatically when you autoload libraries in your
application/config/autoload.php file.
Alternatively, you can load the database library manually in your controller or model using the
$this->load->database() method.

Example of manual loading in a controller:

$this->load->database();

3. Performing Database Queries:

Once the database library is loaded, you can use its methods to perform database queries such
as selecting, inserting, updating, and deleting data.
CodeIgniter provides a query builder class that allows you to build SQL queries using a fluent
interface or execute raw SQL queries.

Example of using the query builder:

$query = $this->db->get('users');
foreach ($query->result() as $row) {
 echo $row->username;
}

Example of executing a raw SQL query:

$query = $this->db->query('SELECT * FROM users');
foreach ($query->result() as $row) {
 echo $row->username;
}

4. Using Active Record:

CodeIgniter's Active Record class provides a convenient way to perform database operations
using object-oriented syntax.
Active Record allows you to chain methods to build complex queries and helps prevent SQL
injection attacks.

Example of using Active Record:

$this->db->select('username, email');
$this->db->from('users');
$this->db->where('status', 'active');
$query = $this->db->get();

ARYA
TECHNO

5. Handling Database Errors:

CodeIgniter provides error handling mechanisms for database operations, allowing you to
handle errors gracefully.
You can enable or disable database debugging in the database.php configuration file based
on your environment.

6. Important Notes:

Always validate and sanitize user input to prevent SQL injection and other security
vulnerabilities.
Use transactions for atomic operations that involve multiple database queries.
Optimize database queries for performance by indexing frequently queried columns and
minimizing unnecessary queries.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

