‘ ARYATECHNO

Profiling and debugging techniques in
Codelgniter

Topics : Codeigniter
Written on March 01, 2024

Profiling and debugging are essential techniques for identifying and resolving issues in your
Codelgniter application. Here's a comprehensive guide on profiling and debugging techniques in
Codelgniter:

1. Codelgniter Profiler:

Codelgniter provides a built-in profiler that displays useful information about your application's
performance, including database queries, loading time, memory usage, and HTTP request data. You
can enable the profiler in your controller methods or globally in the configuration file
(application/config/config.php):

$config['enable profiler'] = TRUE;

2. Logging:

Use Codelgniter's logging library to log messages, errors, and debugging information to files. You
can log messages using different log levels (e.g., DEBUG, INFO, ERROR) and categorize logs for
easier debugging.

$this->load->library('logging');
$this->logging->log message('error', 'An error occurred.');

3. Debugging Toolbar:

Consider using third-party debugging tools like the Codelgniter Debug Toolbar, which provides
enhanced debugging capabilities compared to the built-in profiler. It offers additional features such
as AJAX debugging, request inspection, and detailed database query analysis.

4. Xdebug:

Xdebug is a powerful PHP extension for debugging PHP code. It provides features such as stack
traces, variable inspection, and profiling. Install Xdebug on your server and configure it with your
IDE to debug Codelgniter applications effectively.

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/25/codeigniter.html
https://www.aryatechno.com/topics/profiling-and-debugging-techniques-in-codeigniter

5. Error Handling and Exception Logging:

Implement error handling and exception logging to catch and log errors gracefully. Use try-catch
blocks to handle exceptions and log detailed error messages, stack traces, and context information
for easier debugging.

try {
// Code that may throw an exception

} catch (Exception $e) {
log message('error', $e->getMessage());

}
6. Database Query Logging:

Enable database query logging to log executed SQL queries, query execution times, and affected
rows. Analyze database query logs to identify slow queries, optimize database performance, and
improve application responsiveness.

$this->db->save queries = TRUE;
7. Debugging Environment:
Set up separate debugging environments (e.g., development, staging, production) with different

configurations and error reporting levels. Enable error reporting and debugging features only in
development environments to avoid exposing sensitive information in production.

8. Profiling Tools:

Use external profiling tools like New Relic, Blackfire, or XHProf for advanced performance profiling
and analysis. These tools provide detailed insights into application performance, including function
call traces, memory usage, and database query performance.

9. Browser Developer Tools:

Utilize browser developer tools (e.g., Chrome DevTools, Firefox Developer Tools) to inspect HTTP
requests, response headers, and client-side performance metrics. Use the network tab to analyze
request and response data and identify performance bottlenecks.

10. Unit Testing and Test Automation:

Write unit tests and automate test execution using testing frameworks like PHPUnit or Codelgniter's
built-in testing features. Test your application's functionality thoroughly to catch and fix bugs early
in the development process.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

https://www.aryatechno.com/

