‘ ARYATECHNO

Basics of shell scripting in centos

Topics : Centos Server
Written on March 05, 2024

Shell scripting allows you to automate tasks and execute commands in a sequence, making it a
powerful tool for system administration and automation on CentOS. Here are the basics of shell
scripting:

1. Choose a Shell:

e CentOS uses the Bash shell (/bin/bash) by default, which is the most common shell on Unix-
like systems.
e Other shells like Zsh, Ksh, and Dash are also available but less commonly used.

2. Create a Script File:

e Create a new file with a . sh extension (e.g., script.sh) to write your shell script.
e Use a text editor like nano, vim, or gedit to create and edit the script file.

3. Set the Shebang Line:

e Start the script with a shebang line (#!) followed by the path to the shell interpreter.
e For Bash scripts, use #!/bin/bash.

4. Write Shell Commands:

e Write shell commands in the script file to perform specific tasks or execute commands.
e Commands can include system commands, utilities, redirections, pipes, variables, loops,
conditionals, functions, and more.

5. Execute the Script:

e Make the script executable using the chmod command:

chmod +x script.sh

e Run the script by typing its filename preceded by . /:

./script.sh

6. Variables:

e Use variables to store data or values that can be reused throughout the script.
e Declare variables without spaces around the equals sign:

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/4/centos-server.html
https://www.aryatechno.com/topics/

variable name=value

e Access variables using the $ prefix:

echo $variable name

7. Control Structures:

e Use control structures like loops and conditionals to control the flow of execution in the script.
e Example of a for loop:

for 1 in {1..5} do echo "Number: $i" done

8. Functions:

¢ Define functions to encapsulate code blocks that perform specific tasks.
e Example of a function:

my function() { echo "Hello, world!" } my function

9. Input and Output:
e Read input from users using the read command:
echo "Enter your name:" read name echo "Hello, $name!"
e Redirect output to files or pipes using redirection operators (>, >>, <, |, etc.).

10. Comments: - Use comments to add explanatory notes or annotations to your script for better
readability. - Comments start with the # symbol and extend to the end of the line.

11. Error Handling: - Implement error handling mechanisms to handle errors gracefully and
provide informative error messages to users. - Use exit to terminate the script with a specific exit
code in case of errors.

12. Debugging: - Use debugging techniques like set -x to enable debugging mode and trace the
execution of commands in the script. - Print debugging messages using the echo command to
troubleshoot issues.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

https://www.aryatechno.com/

