
Basics of shell scripting in centos

Topics : Centos Server
Written on March 05, 2024

Shell scripting allows you to automate tasks and execute commands in a sequence, making it a
powerful tool for system administration and automation on CentOS. Here are the basics of shell
scripting:

1. Choose a Shell:

CentOS uses the Bash shell (/bin/bash) by default, which is the most common shell on Unix-
like systems.
Other shells like Zsh, Ksh, and Dash are also available but less commonly used.

2. Create a Script File:

Create a new file with a .sh extension (e.g., script.sh) to write your shell script.
Use a text editor like nano, vim, or gedit to create and edit the script file.

3. Set the Shebang Line:

Start the script with a shebang line (#!) followed by the path to the shell interpreter.
For Bash scripts, use #!/bin/bash.

4. Write Shell Commands:

Write shell commands in the script file to perform specific tasks or execute commands.
Commands can include system commands, utilities, redirections, pipes, variables, loops,
conditionals, functions, and more.

5. Execute the Script:

Make the script executable using the chmod command:

chmod +x script.sh

Run the script by typing its filename preceded by ./:

./script.sh

6. Variables:

Use variables to store data or values that can be reused throughout the script.
Declare variables without spaces around the equals sign:

ARYA
TECHNO

https://www.aryatechno.com/index.html
https://www.aryatechno.com/category/4/centos-server.html
https://www.aryatechno.com/topics/

variable_name=value

Access variables using the $ prefix:

echo $variable_name

7. Control Structures:

Use control structures like loops and conditionals to control the flow of execution in the script.
Example of a for loop:

for i in {1..5} do echo "Number: $i" done

8. Functions:

Define functions to encapsulate code blocks that perform specific tasks.
Example of a function:

my_function() { echo "Hello, world!" } my_function

9. Input and Output:

Read input from users using the read command:

echo "Enter your name:" read name echo "Hello, $name!"

Redirect output to files or pipes using redirection operators (>, >>, <, |, etc.).

10. Comments: - Use comments to add explanatory notes or annotations to your script for better
readability. - Comments start with the # symbol and extend to the end of the line.

11. Error Handling: - Implement error handling mechanisms to handle errors gracefully and
provide informative error messages to users. - Use exit to terminate the script with a specific exit
code in case of errors.

12. Debugging: - Use debugging techniques like set -x to enable debugging mode and trace the
execution of commands in the script. - Print debugging messages using the echo command to
troubleshoot issues.

© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

ARYA
TECHNO

https://www.aryatechno.com/

