Mathematics-1 Sets and Functions

Topics: Computer engineering

Written on March 06, 2024
"Sets and Functions" is a fundamental topic in mathematics that serves as the building block for many other mathematical concepts. Here's an overview of what this chapter typically covers:

1. Introduction to Sets:

- Definition of a set: A collection of distinct objects.
- Representation of sets: Roster notation, set-builder notation.
- Cardinality of sets: Number of elements in a set.
- Subsets and supersets: Relationship between sets where every element of one set is also an element of another set (subset) or vice versa (superset).
- Universal set: Set containing all the objects under consideration.

2. Types of Sets:

- Finite set: A set with a countable number of elements.
- Infinite set: A set with an uncountable number of elements.
- Empty set (null set): A set with no elements.
- Singleton set: A set with exactly one element.
- Equal sets: Sets having exactly the same elements.
- Power set: Set of all subsets of a given set.

3. Operations on Sets:

- Union of sets: Combination of all elements from two or more sets.
- Intersection of sets: Elements common to all sets.
- Difference of sets: Elements present in one set but not in another.
- Complement of a set: Elements not belonging to the set within a universal set.
- Cartesian product: Set of all ordered pairs from two sets.

4. Venn Diagrams:

- Graphical representation of sets using circles or rectangles.
- Illustration of set operations (union, intersection, difference, complement) using Venn diagrams.

5. Functions:

- Definition of a function: A relation between two sets where each input has exactly one output.
- Domain and range: Set of all possible inputs and outputs of a function, respectively.
- Types of functions: One-to-one (injective), onto (surjective), and bijective functions.
- Composite functions: Combination of two or more functions.
- Inverse functions: Function that "undoes" the original function.

6. Special Functions:

- Identity function: Function where the output is equal to the input.
- Constant function: Function where the output is the same constant value for all inputs.
- Polynomial function: Function defined by a polynomial expression.

Sure, let's illustrate "Sets and Functions" with examples:

Sets:

- Finite Set Example:

- Let's consider a set $\mathrm{A}=\{1,2,3,4\}$. This is a finite set because it has a countable number of elements.
- Another example of a finite set could be the set of weekdays: $B=\{$ Monday, Tuesday, Wednesday, Thursday, Friday\}.

Infinite Set Example:

- The set of natural numbers: $\mathrm{N}=\{1,2,3, \ldots\}$ is an infinite set because it continues indefinitely.
- Similarly, the set of real numbers is also infinite.

Empty Set Example:

- Let's denote the empty set as \varnothing or $\}$. It is a set with no elements.
- For example, the set of even numbers that are odd: $C=\{x \mid x$ is an even number and x is odd $\}=\varnothing$.

\circ Union and Intersection Example:

- Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{3,4,5\}$. The union of A and B is $\mathrm{A} \cup \mathrm{B}=\{1,2,3,4,5\}$.
- The intersection of A and B is $A \cap B=\{3\}$.

- Complement Example:

- Let's consider a universal set $\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}$. If $\mathrm{A}=\{2,4,6,8\}$, then the complement of A is $\mathrm{A}^{\prime}=\{1,3,5,7,9,10\}$.

- Functions:

One-to-One (Injective) Function Example:

- Let's define a function $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{a, b, c\}$ such that $f(1)$ $=a, f(2)=b$, and $f(3)=c$.
- This function is one-to-one because each element in A maps to a unique element in
B.

- Onto (Surjective) Function Example:

- Consider a function $g: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{a, b\}$. Let $g(1)=a, g(2)$ $=b$, and $g(3)=b$.
- This function is onto because every element in B is mapped to by at least one element in A.

- Composite Function Example:

- Suppose we have two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Let $f(x)=x^{\wedge} 2$ and $g(y)=2 y$.
- The composite function $h(x)=g(f(x))=2\left(x^{\wedge} 2\right)$.

Inverse Function Example:

- Let's define a function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ where $\mathrm{A}=\{1,2,3,4\}$ such that $\mathrm{f}(1)=2, f(2)=3$, $\mathrm{f}(3)=4$, and $\mathrm{f}(4)=1$.
- The inverse function of f, denoted as $f^{\wedge}(-1)$, would be such that $f^{\wedge}(-1)(2)=1$, $f^{\wedge}(-1)(3)=2, f^{\wedge}(-1)(4)=3$, and $f^{\wedge}(-1)(1)=4$.
© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

