Physics - Kinematics

Topics: Computer engineering

Written on March 18, 2024

Kinematics is the branch of classical mechanics that deals with the motion of objects without considering the forces causing the motion.

1. Basic Concepts:

- Position: The location of an object relative to a reference point. It is typically described using coordinates in a coordinate system.
Displacement: The change in position of an object. It is a vector quantity and has both magnitude and direction.
Velocity: The rate of change of displacement with respect to time. It is also a vector quantity.
- Speed: The magnitude of velocity without regard to direction. It is a scalar quantity.
- Acceleration: The rate of change of velocity with respect to time. Like velocity, it is also a vector quantity.
- Scalar vs. Vector Quantities: Scalar quantities have only magnitude (e.g., speed), whereas vector quantities have both magnitude and direction (e.g., velocity, displacement).

2. Equations of Motion:

- Constant Velocity (Uniform Motion): If an object moves with a constant velocity, its displacement can be calculated using the equation $\Delta \mathrm{x}=\mathrm{v} \cdot \mathrm{t}$, where v is the velocity and t is the time.
Constant Acceleration (Uniformly Accelerated Motion): If an object accelerates with a constant acceleration a, its displacement can be calculated using the equation $\Delta \mathrm{x}$ $=\mathrm{v}_{0} \cdot \mathrm{t}+1 / 2 \cdot \mathrm{a} \cdot \mathrm{t}^{2}$, where v_{0} is the initial velocity.
- Equations of Motion with Uniformly Accelerated Motion: The following equations describe the relationships between displacement ($\Delta \mathrm{x}$), initial velocity (v_{0}), final velocity (v), acceleration (a), and time (t):
- $\mathrm{v}=\mathrm{vo}+\mathrm{at}$ (Velocity-Time equation)
- $\mathrm{v}^{2}=\mathrm{vo}^{2}+2 \mathrm{a} \Delta \mathrm{x}$ (Velocity-Displacement equation)

3. Graphical Representation:

- Kinematic quantities can be represented graphically, where displacement, velocity, and acceleration are plotted against time.
- The slope of the displacement-time graph represents velocity, while the slope of the velocity-time graph represents acceleration.

4. Projectile Motion:

- Projectile motion refers to the motion of an object projected into the air and subject to the force of gravity.
- It consists of both horizontal and vertical motion components.
- The horizontal motion is uniform, while the vertical motion is uniformly accelerated due to gravity.

5. Relative Motion:

- Relative motion describes the motion of one object with respect to another object.
- It involves considering the motion of one object as observed from the frame of reference of another object.
© Copyright Aryatechno. All Rights Reserved. Written tutorials and materials by Aryatechno

